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We study the competition between various secondary instabilities that co-exist in
a preturbulent stratified parallel flow subject to Kelvin–Helmholtz instability. In
particular, we investigate whether a secondary braid instability might emerge prior
to the overturning of the statically unstable regions that develop in the cores of the
primary Kelvin–Helmholtz billows. We identify two groups of instabilities on the braid.
One group is a shear instability which extracts its energy from the background shear
and is suppressed by the straining contribution of the background flow. The other
group, which seems to have no precedent in the literature, includes phase-locked
modes which grow at the stagnation point on the braid and are almost entirely
driven by the straining contributions of the background flow. For the latter group,
the braid shear has a negative influence on the growth rate. Our analysis demonstrates
that the probability of finite-amplitude growth of both braid instabilities is enhanced
with increasing Reynolds number and Richardson number. We also show that the
possibility of emergence of braid instabilities decreases with the Prandtl number
for the shear modes and increases for the stagnation point instabilities. Through
detailed non-separable linear stability analysis, we show that both braid instabilities are
fundamentally three dimensional with the shear modes being of small wavenumbers
and the stagnation point modes dominating at large wavenumber.
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1. Introduction
In both stratified and unstratified shear flows, the transition to turbulence is known

to occur through a finite sequence of steps in accord with the qualitative theory of
Ruelle & Takens (1971). In either case the first step in this sequence usually involves
the growth to finite amplitude of an inherently two-dimensional primary instability
(for a counterexample, see Smyth & Peltier (1990)), of which Kelvin–Helmholtz (KH)
billows (Kelvin 1871) are the canonical example.

KH waves have been ubiquitously observed and studied in the atmospheric context
(Ludlam 1967; Browning & Watkins 1970; Browning 1971; Gossard 1990; and more
recently by Luce 2010). In the oceans, KH waves have been found near the surface
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(Woods 1968; Thorpe 1978; Haury, Briscoe & Orr 1979; Marmorino 1987), in the
deep ocean induced by large-scale internal wave shear (Haren & Gostiaux 2010), in an
energetic estuarine shear zone (Geyer et al. 2010) and accompanying internal solitary
waves propagating shoreward over the continental shelf (Moum et al. 2003; Lamb &
Farmer 2011). Although most of the oceanic observations reveal very few KH billows,
the studies by Geyer et al. (2010) and Haren & Gostiaux (2010) provide evidence
of a train of KH billows similar to those often observed in the atmosphere and in
laboratory experiments (Thorpe 1971, 1981, 1987; Holt 1988; Caulfield, Yoshida &
Peltier 1996; or see Thorpe 2005 for a thorough review). Owing to experimental
limitations, the parameter space in which the experiments are performed is most often
far from appropriate to either of the natural systems. Even though both laboratory
and in situ ocean/atmosphere observations reveal the emergence of a primary KH
wave, the large difference in the governing Reynolds and Prandtl numbers may lead
to significant differences in the second step in the route to turbulent collapse and the
attendant enhanced molecular dissipation and irreversible mixing.

In this study, the focus will be upon stratified shear layers as opposed to those
of constant density. Although KH instability arises in both circumstances (Smyth &
Peltier 1994; Potylitsin & Peltier 1998), the subsequent dynamics differ considerably
due to the influence of the stratification. In stratified shear flows, the buoyancy
force gives rise to a plethora of secondary instabilities which provide mechanisms
through which the primary KH billows may undergo turbulent collapse. Over the
past several decades, the majority of the theoretical and numerical research in this
field has been focused upon such secondary instabilities of the primary KH waves
(Corcos & Sherman 1976; Klaassen & Peltier 1985, 1989, 1991; Smyth & Peltier
1990, 1991, 1993, 1994; Caulfield & Peltier 1994; Staquet 1995; Cortesi, Yadigaroglu
& Bannerjee 1998; Caulfield & Peltier 2000; Staquet 2000; Smyth, Moum & Caldwell
2001; Smyth 2003).

Once an array of primary KH vortices develop in a mixing layer, the vortices are
known to be susceptible to several secondary instabilities. One of these instabilities
is the amalgamation instability (Klaassen & Peltier 1989) (hereafter referred to as
KP89) which in its most common form corresponds to vortex pairing (Winant &
Browand 1974; Pierrehumbert & Widnall 1982; KP89). Theoretical analysis of KP89
demonstrated that the pairing instability has a sufficiently high growth rate that it
should inevitably be realized in the regime of modest Reynolds number characteristic
of laboratory circumstances. It remains a significant issue as to whether this interaction
may also occur in the higher-Reynolds-number regime that is characteristic of
oceanographic and atmospheric circumstances. Indeed, merging events have seldom
been observed in these natural systems. One of our goals is to understand whether
there might exist physical processes at high Reynolds numbers which would precede
and thereby inhibit the pairing interaction. One of the best studied of such three-
dimensional instabilities is the shear-aligned convective instability (which arises due
to overturning of statically unstable regions inside the vortex cores) first predicted
by Davis & Peltier (1979), and thereafter studied in detail by Klaassen & Peltier
(1985) (hereafter referred to as KP85) and Caulfield & Peltier (1994) Caulfield &
Peltier (2000) (hereafter referred to as CP00). Experimental studies of Thorpe (1987)
and Caulfield et al. (1996) also clearly revealed the occurrence of this secondary
instability and its important role in the transition of the flow to turbulence in the
regime of moderate Reynolds number. Another well-known secondary instability is the
secondary shear instability of the vorticity braid (the vorticity filament which connects
adjacent vortex cores in a train of billows) first predicted by Corcos & Sherman
(1976) (hereafter referred to as CS76) and further studied in Staquet (1995, 2000)
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and Smyth (2003) (hereafter referred to as S03). Evidence of such secondary braid
vortices has been reported by Geyer et al. (2010) and perhaps also by Thorpe (1978)
(figure 2b of the latter seems to show braid vortices). A third group of instabilities
which grow on the braid of a KH instability in a stratified layer, and which have
previously been spotted but not properly discussed in terms of their origin, will be
discussed in this work. This group of instability modes primarily extract their energy
from the background strain field. Dritschel et al. (1991) discussed this group in the
context of an infinitely long vorticity layer in an unstratified environment. We will
show how these modes become relevant in the context of this work.

The above-referenced analyses of the braid instability have suggested that this
instability may play a major roll in turbulence transition. As the secondary convective
instability (which is not realizable in two-dimensional simulations) provides a rapid
route to turbulence (CP00), it remains an important question as to whether the
previously referenced two-dimensional numerical simulations showing emergence of
braid shear instabilities are at all relevant to the understanding of a three-dimensional
flow. In the present paper we address this question by performing detailed non-
separable linear stability analyses of the primary train of KH billows. Our main
goal is to study the competition between the pairing, shear aligned convection and
braid shear instabilities. Our approach will employ the methodology of KP85.

As the secondary linear stability analysis consumes a lot of numerical resources,
in the first half of this paper we develop a simple physics-based model (based on
CS76 and S03 for braid instability and KP85 for secondary convective instability) to
predict maps of susceptibility for the braid shear and core convective instabilities. In
the remainder of this paper (as well as in the companion paper Mashayek & Peltier
(2012), hereafter referred to as MP2), these maps are employed as a guide in choosing
the regions of parameter space in which detailed non-separable instability analysis is
performed. In MP2 we provide a detailed investigation of the effect of stratification
on the set of secondary instabilities to which a KH billow may be subject and of the
energetics of the secondary modes and their influence upon irreversible mixing.

We will repeatedly refer to several secondary instabilities in this paper and in
MP2 by referring to their acronyms. This may make it difficult for the reader to
remember what each acronym represents. Therefore, a secondary instability lexicon is
provided in figure 19 in the Appendix. Also, to avoid confusion, reference to previous
contributions to the literature will also appear in the form of acronyms but these will
appear in italics (such as MP2, CS76 etc.) while instability acronyms will not. The
appendix also includes a table which can be used to remind the reader of which
studies the italicized acronyms refer to.

2. Theoretical preliminaries: formulation of the problem and numerical
solution of the governing equations

We consider a stably stratified shear layer which is horizontally periodic in space
and evolves with time. The flow domain is described in Cartesian coordinates with
x and z denoting the streamwise and vertical directions, respectively. The initial
background profiles of velocity and density are assumed to be of the form

Ū?(z?)= U0 tanh
(

z?

h

)
, (2.1)

ρ̄?(z?)= ρa − ρ0 tanh
(

Rz?

h

)
, (2.2)
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where U0 and ρ0 are reference velocity and density, h is half the shear layer thickness,
and R is the ratio of the characteristic scale of velocity variation to that of the density
variation and is chosen to be 1.1 based on some experimental observations (Thorpe
1985, 1987; Caulfield et al. 1996) in which the working fluid is salt stratified water. It
should be noted that this value can be larger, however, we keep it constant to avoid
further complicating an already complex parameter space to be explored in this paper.
A flow configuration such as this is known to be most unstable to two-dimensional KH
instability (see Drazin & Reid 1981) provided that the gradient Richardson number
defined by

Ri(z?)= N2/ (shear)2 = −g

ρ0

∂ρ?

∂z?
/

(
dŪ?

dz?

)2

(2.3)

is sufficiently small. Based upon the theorem of Howard (1961) and Miles (1961),
it is well understood that a necessary condition for instability is that the Richardon
number achieves a value less than 1/4 somewhere in the flow. Under this condition,
the destabilizing influence of the velocity shear is sufficient to overcome the stabilizing
influence of the density stratification. It is the onset of the primary KH instability
that provides the necessary background for growth of secondary instability(s) which
eventually lead to turbulent collapse of the mixing layer.

For the profiles described by (2.1) and (2.2), the gradient Richardson number at the
centre of the shear layer, Ri0, has the lowest value in the initial profiles and therefore
we regard it as the appropriate measure of the stratification within the flow. Our
non-dimensionalization of the governing equations is based upon the following choices
for the scales of time, distance, velocity, pressure and density, respectively:

t = t?U0/h, xi = x?i /h, ui = u?i /U0, p= p?/ρ0U2
0, ρ = ρ?/ρ0 (2.4)

where ρ? and p? are departures from hydrostatic balance. We also assume that the
flows are incompressible with density variations small enough for the Boussinesq
approximation to be valid. The equations of motion, incompressibility and continuity
in dimensionless form then reduce to

Dui

Dt
=− ∂p

∂xi
− Ri0

R
ρδi2 + 1

Re

∂2ui

∂x2
j

, (2.5)

∂ui

∂xi
= 0, (2.6)

Dρ
Dt
= 1

Re Pr

∂2ρ

∂x2
j

, (2.7)

where (i, j = 1, 2) for the fully nonlinear but two-dimensional flows for which these
governing equations will be numerically integrated to produce the basic states whose
stability we will investigate to three-dimensional perturbations. The Reynolds number
is defined by Re = U0d/ν where ν is the kinematic viscosity and the Prandtl number
by Pr = ν/κ where κ is the thermal diffusivity.

Throughout this study, we will primarily consider flows in the range 1000 < Re <
2000, 0.04 < Ri0 < 0.2 and 1 < Pr < 4. Equations (2.5)–(2.7) provide the starting
point from which our theoretical analyses will follow. The numerical methods we
employ are constructed to provide fully resolved direct numerical simulations (DNSs)
of those equations. The algorithm we employ is that described in detail by Taylor
(2007) and Bewley (2011). Periodic boundary conditions are applied in the streamwise
direction with derivatives in this direction being treated using a pseudo-spectral
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method. The derivatives in the vertical direction are computed using second-order
finite differences. The numerical scheme ensures the discrete conservation of mass,
momentum and energy. To allow for the growth of the pairing instability in the flow,
the horizontal extent of the domain is chosen to be twice the wavelength of the
most unstable KH mode (based on inviscid linear theory) of the background velocity
and density profiles. Calculations similar to those of Hazel (1972) led to λ = 14.27h,
implying a horizontal domain scale of 28.54h (for two wavelengths) for the case in
which the Richardson number is 0.04. The vertical extent of the computational domain
has been chosen to be 30 times the half-shear-layer depth, h. This is sufficiently large
to ensure that the flow remains unaffected by the horizontal boundaries even in cases
in which pairing occurs. Resolution studies have been conducted to ensure that all
of the simulations are fully resolved. A solid test of accuracy of the simulations is
to investigate whether equation (2.20) of CP00 holds true during flow evolution. A
list of all two-dimensional numerical simulations which will be employed to verify
the findings of our to-be-discussed heuristic model or to provide the background flow
required for non-separable stability analysis is provided in table 1. For all simulations
listed in the table, this equation was satisfied to better than one part in 106. It is
important to note that even though the resolution of our simulations is high enough to
resolve all energized scales throughout the life cycle of the two-dimensional KH wave,
these simulations will not be used to study the turbulent phase of the flow. This is
because two-dimensional simulations become irrelevant to real three-dimensional flows
as soon as the necessary environment for growth of three-dimensional instabilities
develops. We employ these two-dimensional simulations simply to provide background
flows during the laminar phase of KH wave evolution to serve as basic states for the
purpose of our secondary stability analyses.

The required two-dimensional simulations are initialized by the addition of a very
small amplitude perturbation in the form of the most unstable KH mode to the velocity
and density fields defined by the background profiles (2.1) and (2.2) to stimulate the
growth of primary KH instability and save computational resources. To ensure that
this initialization does not have any significant impact on the results, the amplitude of
this initial disturbance is chosen to be extremely small with its corresponding kinetic
energy being 10−5 times that of the background shear flow enclosed within a distance
of 5h from the centre of the shear layer. To allow for an unbiased initiation of any
secondary instability to which the flow may be prone, we also add incompressible
white noise to the velocity field and white noise with zero mean to the density
field. The non-dimensional amplitudes the primary KH wave and the white noise are
10−2 and 10−4, respectively. Free-slip impermeable boundary conditions on velocity
components are applied at the top and bottom boundaries of the domain, together with
a condition of zero density flux.

3. Physical models for the shear aligned convective and braid instabilities
In this section we develop simple models capable of predicting the time variations

in the strength of the secondary shear instability (SSI) of the braid and secondary
convective instability (SCI) of the core. The model for the latter is based upon the
Rayleigh number of the unstable regions (Rau) that form in the cores of the KH
billows as the density field is rolled up by the growth of the wave as discussed
in KP85. In the latter case we employ theoretical analyses of CS76 to estimate the
minimum Richardson number in the braid of the KH wave after it has grown to its
maximum amplitude. Together, these heuristic analyses will enable us to propose a
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Case name Grid
(Nx× Nz)

tm tmd 1u
ρm

δu
m δu

md Hm
(CS76)

tm
(CS76)

c1-1000-0.04 768 × 800 45 51 1.91 0.75 0.64 3.34 56
c1-1000-0.08 768 × 800 55 57 1.73 0.65 0.58 2.9 61
c1-1000-0.12 768 × 800 66 66 1.37 0.45 0.45 2.54 65
c1-1000-0.16 768 × 800 81 78 0.83 0.39 0.41 2.22 73
c1-1000-0.20 768 × 800 130 109 0.21 0.25 0.33 1.94 85
c1-2000-0.04 768 × 800 42 51 2.0 0.65 0.55 3.34 56
c1-2000-0.08 768 × 800 55 55 1.95 0.5 0.5 2.9 61
c1-2000-0.12 768 × 800 64 66 1.74 0.48 0.45 2.54 65
c1-2000-0.16 768 × 800 77 77 1.2 0.4 0.4 2.22 73
c1-2000-0.20 768 × 800 130 117 0.48 0.26 0.26 1.94 85
c2-1000-0.04 768 × 800 45 52 2 0.6 0.45 3.34 56
c2-1000-0.08 768 × 800 54 58 1.96 0.55 0.46 2.9 61
c2-1000-0.12 768 × 800 67 65 1.65 0.45 0.49 2.54 65
c2-1000-0.16 768 × 800 85 81 0.94 0.34 0.38 2.22 73
c2-1000-0.20 768 × 800 116 97 0.15 0.26 0.26 1.94 85
c2-2000-0.04 768 × 800 44 52 2 0.5 0.45 3.34 56
c2-2000-0.08 768 × 800 55 61 1.96 0.37 0.37 2.9 61
c2-2000-0.12 768 × 800 66 66 1.98 0.45 0.45 2.54 65
c2-2000-0.16 768 × 800 83 80 1.38 0.37 0.4 2.22 73
c2-2000-0.20 768 × 800 127 110 0.38 0.23 0.19 1.94 85
c4-1000-0.04 2048 × 2208 45 55 2 0.5 0.38 3.34 56
c4-1000-0.08 2048 × 2208 55 60 2 0.44 0.41 2.9 61
c4-1000-0.12 2048 × 2208 68 66 1.9 0.35 0.37 2.54 65
c4-1000-0.16 2048 × 2208 83 82 1.1 0.31 0.31 2.22 73
c4-1000-0.20 2048 × 2208 125 88 0.15 0.26 0.26 1.94 85
c4-2000-0.04 2048 × 2208 44 52 2 0.45 0.3 3.34 56
c4-2000-0.08 2048 × 2208 54 61 2 0.37 0.34 2.9 61
c4-2000-0.12 2048 × 2208 66 69 2 0.29 0.27 2.54 65
c4-2000-0.16 2048 × 2208 83 80 1.3 0.31 0.32 2.22 73
c4-2000-0.20 2048 × 2208 115 90 0.29 0.24 0.18 1.94 85

TABLE 1. Two-dimensional numerical simulations performed to provide the basis for the
non-separable secondary stability analyses discussed in this paper and in the companion
paper MP2 and also used for verification of the theoretical model discussed in § 3.
Parameters representing each column of the table will be defined in subsequent sections.

map which will help in predicting the probability of occurrence of the two instabilities
in various regions of the three-dimensional Pr–Re–Ri parameter space.

Table 1 provides the details of the two-dimensional simulations to be employed
in what follows. All test cases are labelled as ‘case Pr–Re–Ri’. For example,
c1-1000-0.04 refers to a case with Pr = 1, Re = 1000 and Ri0 = 0.04. To avoid
confusion with the acronyms used for secondary instabilities, as stated previously we
will employ italic notation for references to previous work (such as CS76). We will
also use the prefix ‘SM−’ for reference to the materials in the supplementary material
(available at journals.cambridge.org/flm).

3.1. A heuristic model for the baroclinic vortex core
As the amplitude of the KH wave increases and the billow ‘rolls up’, unstable regions
of relatively heavy fluid become superimposed over regions of light fluid within the
billow cores (see figure 1a–d). It was speculated by Davis & Peltier (1979) and
then shown by KP85 that these unstable regions achieve sufficiently large Rayleigh
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FIGURE 1. Density contours overlaid by shaded unstable regions for t = 30, 33, 44, 57
shown in (a) through (d). Evolution of: (e) diameter of the core; (f ) 1ρu; (g) δu; and (h)
Rau. All the plots are from a case with Re= 1000, Pr = 1 and Ri0 = 0.08. ‘+’ indicates actual
points extracted from the simulation and lines are simple polynominal fits to them.

numbers, even at modest Reynolds numbers, to support SCI. It was later established by
Caulfield & Peltier (1994) and CP00 that the shear aligned convective instability arises
in three-dimensional DNS analyses of such flows and is responsible for turbulent
transition. In this section we develop a qualitative model of the SCI to predict how
the possibility of its realization should vary with Reynolds, Prandtl and Richardson
numbers.

Figure 1 shows the appearance and time evolution of various unstable regions inside
the cores for a test case. In general, a new unstable region forms after each complete
overturning of the core. We choose to monitor the Rayleigh number of the outermost
unstable region (which has the largest Rayleigh number, Rau) as a measure of the
susceptibility of the flow to onset of the SCI. We intend to estimate Rau at times up to
and beyond the point of maximum amplitude of the KH wave. The Rayleigh number
of the primary unstable region is defined as

Rau = Re2PrRi0
1ρu

1ρ0

(
δu

h

)3

(3.1)

where 1ρu is the density difference across the primary (or outermost) unstable region,
1ρ0 is half the density difference across the original shear layer (which has a value
of unity in non-dimensional units) and δu is the thickness of the primary unstable
region. As shown in figure 1, δu decreases with time as the number of unstable regions
increases and so does 1ρu due to diffusion. So, after Rau reaches a maximum at
a time close to the time of maximum billow amplitude (tm), it thereafter decreases
(figure 1h). The value of Rau at tm is supercritical for flows with a sufficiently large
Reynolds number and the main question is whether Rau remains supercritical for long
enough to allow for the SCI to fully develop.

To extract the required information from the DNS calculations for calculating Rau,
we extract (for each time step) a profile through the centres of the cores and measure
the core thickness Dcore and the time evolution of 1ρu and δu. Figure 1(e–g) shows
the results for Dcore, 1ρu and δu for the test case. The core reaches its maximum
amplitude at time tm = 55 which is very near the time at which 1ρu peaks. However,
δu reaches its maximum earlier at t ∼ 40 and by tm, δu is already decreasing.
Figure 1(h) shows Rau calculated using the information extracted from the simulation.
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The value of Rau falls below 103 near t = 70 and the probability of SCI emergence
diminishes rapidly beyond this point. By assuming that Rau can be meaningfully
employed as a measure of the susceptibility of the flow to the occurrence of SCI, and
also assuming that the critical Rayleigh number for convective instability is of the
order of 103, panel (h) indicates that the possibility of SCI exists over a relatively long
period of time during KH billow evolution. Our choice of the nominal value of 103

for the critical Reyleigh number is simply motivated by the fact that in heated from
below plane-layer convection, the actual critical value ranges from 658 for stress-free
boundaries to 1760 for no-slip boundaries. Please note that even though the unstable
region is sheared, since the SCI is shear aligned this shear will exert no significant
influence upon the critical value for onset.

In order to estimate Rau and its time evolution as a function of Re, Pr and Ri0, we
require estimates of: (i) tm; (ii) the value of 1ρu at tm and beyond; and (iii) the time
evolution of δu.

3.1.1. Estimating tm

We know that tm is primarily a function of Ri0 and relatively independent of Re
and Pr and it is not accurately estimated using the model of CS76. We have obtained
a third-order polynominal fit to a set of numerical simulations (listed in table 1)
for tm using regression analysis. In our subsequent analysis we will use this fit as
representative of tm as a function of the initial Richardson number, Ri0.

3.1.2. Estimating 1ρu
m

Figure 1(f ) shows that the density difference across the primary unstable region of
the core reaches a maximum value of 1ρu

m = 1.73 which is slightly less than 2, the
density difference across the initial shear layer. The deficit is due to the action of
molecular diffusion during the roll-up of the KH billow. For cases with Ri0 < 0.16,
1ρu

m is closer to 2 but it becomes much smaller as Ri0→ 0.2 (see the fifth column of
table 1). This is because the growth of the KH wave is suppressed by the increase in
the stratification leading to a larger roll-up time and hence more time for diffusion of
density. In our calculations of the Rau, we will employ the following linear correlation
between 1ρu

m and tm (see figure SM − 2(b) in the supplementary material for a more
detailed discussion):

1ρu
m = 3.22− 0.024tm. (3.2)

3.1.3. Estimating δu

As shown in figure 1, the thickness of the primary unstable region of the core
reaches its maximum at some time prior to tm and then decreases afterwards. As
approximately one new unstable layer is formed with each overturn of the core, we
take the number of unstable regions to be proportional to the number of overturns,
n, where n ∝ t/to and to is the characteristic overturn time equal to λ/U0. So, we
have tU0/λ (where λ is the wavelength of the primary KH wave). The thickness of
the primary unstable region is proportional to the inverse of the number of unstable
regions and so we can write δu(t) ∝ λ/U0t. A least squares fit to our simulation data
for δu at tm leads to a proportionality constant of unity and an exponent of 0.85 for tm

giving (noting that U0 = 1):

δu
m =

λ

tm
0.85
. (3.3)
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FIGURE 2. (Colour online) (a) On the left: density contours overlain by the primary and
secondary regions (shaded regions) for the case c1-1000-0.08 at tm. On the right: density
profiles across the two shown unstable regions at cross-sections a and b. The origin of the
vertical coordinate shown by y is the centre of the core marked by a ‘+’. (b) Evolution of
the primary unstable region of the case shown in (a) obtained by solving a one-dimensional
diffusion equation (and not from the simulation). The arrows show increase in time from
tm = 57 to t = 85.

The deviation of the power of tm from unity is due to the fact that during the
very early stages of KH billow evolution, the number of unstable regions is not yet
precisely proportional to the number of overturns.

3.1.4. Calculation of Rau versus time
We can now estimate the value of the Rau at time tm by using (3.1). Inserting the

information for tm, 1ρu
m and δu into (3.1) leads to

Rau
m = Re2PrRi0

(
3.22− 0.024tm

1ρ0

)(
λ

ht0.85
m

)3

. (3.4)

To calculate the evolution of Rau beyond tm, we need to calculate the time evolution
of 1ρu. We note that the density profile across the primary core’s unstable regions has
a tanh-type profile because it is formed from the roll-up of a tanh-like initial shear
layer. Figure 2(a) shows the density contours in the core for the case c1-1000-0.08 and
at time tm. The density contours are overlain by the primary and secondary unstable
regions (shaded regions). The right half of figure 2(a) plots the density profiles across
each unstable region. The origin of the y-axis in the figure is the centre of the core
marked by a ‘+’. The outermost unstable region has a density difference close to two.
The density difference across the secondary unstable region is smaller than two and is
increasing with time as it moves outward. The thickness of the unstable region also
shrinks as it moves outward.

We solve for time evolution of 1ρu by solving a one-dimensional diffusion equation
in the form

∂ρ

∂t
= 1

RePr

∂ρ2

∂z2
, (3.5)

with the initial condition 1ρu = 1ρu
m at tm and a tanh vertical profile. For simplicity,

we neglect the curvature of the primary unstable region since it has already
considerably flattened out by tm. The diffusion equation is solved on a shrinking
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FIGURE 3. Calculations of the Rau versus time using the model (lines) plotted alongside
data points obtained from the simulations (markers): (a) Pr = 1, Re = 1000; (b) Pr = 1,
Re = 2000; (c) Pr = 1, Re = 4000; (d) Pr = 2, Re = 1000; (e) Pr = 2, Re = 2000. The line
and marker attributes in each figure are as follows: the solid line with triangles corresponds
to Ri= 0.04, the dotted line with diamonds corresponds to Ri= 0.08, dashed-dotted line with
‘+’ corresponds to Ri = 0.12, the dashed line with circles corresponds to Ri = 0.16 and the
solid thick line with ‘*’ corresponds to Ri= 0.2.

grid (according to (3.3)) by using a finite difference discretization, a Crank–Nicolson
time stepping method and no density flux boundary conditions at the top and bottom
boundaries. Figure 2(b) shows the result of the calculation for the primary unstable
region shown in frame(a). The density difference across the unstable region decreases
with time due to diffusion and its thickness decreases as more and more unstable
regions form inside the core (see figure 1).

Figure 3 shows the results of the model predictions for time evolution of Rau

compared with data extracted from the simulations of table 1. The model predictions
capture the nature of the decrease in 1ρu

m fairly accurately. Even though in the
construction of the model we employed some information from the simulations, this
does not undercut the validity of the model itself and we expect it to be applicable to
moderately higher values of the Reynolds and Prandtl numbers for three reasons. First,
tm is mainly a function of Ri0 alone. Second, 1ρu

m could be assumed to be two. This
would introduce an error which would decrease with increase in Re and Pr . Third, we
could assume a unit power for tm in (3.3).

3.2. Analysis of the braid

We begin with the simplified equations proposed in CS76 which are suggested to
govern the evolution of the vorticity and the local shear across the braid:

∂Ω

∂t
+ ∂

∂x′
(ucΩ)+ ∂

∂z′
(vcΩ)= 1

Re

∂2Ω

∂z′2
+ Ri0

∂ρ

∂z′
sin(θ), (3.6)

∂S

∂t
+ ∂

∂x′
(ŪBS)=−Ri01ρ sin(θ), (3.7)
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in which ŪB = 1/2(u++ u−) and u+, u− are the braid streamwise velocities at its upper
and lower surfaces and S is the shear across the braid. Here x′ denotes the streamwise
axis of a coordinate system aligned with the braid with its origin located at the
stagnation point. Following CS76, the along-x′-axis component of the velocity induced
by the cores, uc, is assumed to be directly proportional to the braid downstream
displacement through uc = γ x′ where γ is the strain rate. As we will see, the braid
strain rate plays an important role in our analyses. The strain rate at the stagnation
point halfway between two vortex cores in a train of Stuart vortices (Stuart 1967) is
given by

γs =−kU

(
A

A+ 1

)1/2(
1+ A

A+ 1

)1/2

(3.8)

where k = 2π/λ is the wavenumber of the train of vortices and A is a parameter
between 0 and 1 that is related to the ratio of the vorticity in the cores (Γc) to the total
vorticity (Γ = 2λU) through A = tan2(0.25πΓc/Γ ). The local tilt angle of the braid at
this location is given by (CS76)

ψ = sin−1

[(
A

A+ 1

)1/2
]
. (3.9)

An important parameter used in analyses by Staquet (1995) and S03 in studying the
SSI of the braid is γs/Ωs. Ω can be calculated by integration in time of (3.6) and Ωs

can be obtained by evaluating Ω at x′ = 0.
We closely follow the procedure of CS76 and calculate the evolution of the flow

associated with the braid. Both the braid strain rate and tilt angle will be needed
once we employ the model of S03 to calculate the braid Richardson number. In
the supplementary material we provide a sample CS76 calculation and point out
how these parameters vary with time during flow evolution. Comparison between the
predictions of CS76 and our two-dimensional numerical simulation results demonstrate
that the CS76 model provides good estimates for the evolution of the braid tilt angle
(although the agreement diminishes for Ri0 > 0.16, see the supplementary material
for details) but does not accurately predict the time scale of evolution of the basic
KH wave. This is because the final stage of evolution in the model calculation is
assumed to occur when all of the vorticity in the braid has been transported into
the cores. This process is not especially sensitive to the flow field which advects the
vorticity. Therefore, using Stuart vortices to represent the flow field of KH billows
leads to acceptably accurate results. However, the time required for the transport
depends directly on the flow field and so using Stuart vortices leads to an incorrect
estimation of the time of evolution. This can be seen by comparing the third column
of table 1 (which is labelled tm and includes the time at which the KH waves reach
their maximum amplitude in the simulations) with the last column (which contains the
same time calculated based on the CS76 method).

In the literature RiB has been used as one measure of the susceptibility of the
braid to SSI. S03 (following the approach of CS76) proposed relations for RiB by
considering the braid to be an infinitely long tilted shear filament. As pointed out
by Dritschel et al. (1991) and also noted by Staquet (1995) and S03, the strain
field induced by the cores can decrease the possibility of SSI significantly. Our two-
dimensional simulations also support this. We verify the findings of Dritschel et al.
(1991) and Staquet (1995) regarding the influence of the core-induced strain field on
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the braid using non-separable stability analyses in following sections. As we will also
see, however, these findings will need to be significantly extended.

The following relation for RiB was proposed in S03 based on the equilibrium
similarity theory of CS76 (noting that this equation corresponds to an infinitely long
braid; in the case of a KH wave, the most relevant point on the braid is the stagnation
point, therefore we use γs instead of γ in this equation):

RiB = (2π)1/2 γ 3/2
s Pr3/2−β

Re1/2Ri01ρb sin(ψ) tan(ψ)
, (3.10)

where 1ρb is the density difference across the braid (usually close to two) and
β = 0.6307 for 1 < Pr < 7. The velocity and density gradients used in the definition
of the braid Richardson number are defined with respect to the proper braid coordinate
system (x′–z′). The equilibrium similarity analysis of S03 can be applied to the flow
either prior to or after adjacent cores have merged as the analysis does not rely on
the details of the core interior. The simulations described in S03 were initialized in
such a way that the pairing process occurred soon after the KH wave had reached
its maximum amplitude. Under these circumstances it was shown that secondary
shear instabilities emerged on the braid after the two cores had merged rather than
at an earlier stage prior to the merging event. Had the flow initialization employed
in S03 not favoured the pairing process, merging would have occurred at a later
time providing more time for secondary instabilities (such as SCI or braid SSI) to
grow as shown in Staquet (1995) for SSI. In agreement with Staquet (1995), our
two-dimensional simulations show that even with white noise initialization a SSI of
the braid is not guaranteed prior to pairing for small RiB (due to the influence of
the strain field) but it might be possible afterwards (with almost the same RiB). As
S03 employed (3.10) in his analysis only to post-pairing braids, we have verified that
it is also applicable to pre-pairing braids by comparing its predictions with those of
our two-dimensional simulations (see table SM1 in the supplementary material for
details).

In order to extract braid information from the simulations, we have developed
appropriate diagnostic tools, details of which are discussed in the supplementary
material along with their application to case c1-2000-0.12. We will employ this
toolbox in the analyses to follow in the remainder of this paper as well as in the
companion paper MP2.

3.3. A secondary instability phase diagram
Figure 4(a) shows plots of variations in Rau for times beyond tm (the ‘t-axis’ is shifted
by an amount tm). The data reveals a clear increase in Rau with an increase in Pr
for fixed values of Ri0 and Re. This is because an increase in Pr implies a slower
diffusion of the unstable regions inside the core and hence a larger density difference
across the region which translates into larger Rau. Figure 4(b) in the figure shows the
change in Rau with an increase in Re at fixed Pr and Ri0. An increase in Re also
increases the probability of the secondary convective instability by increasing the value
of Rau. This can be interpreted in two ways. If the increase in Re is achieved through
an increase in the shear layer velocity at a fixed value of ν, it leads to an increase
in the relative strength of the vorticity bands that develop within the core during the
roll-up process. This suppresses diffusion across the vorticity bands and so leads to a
slower diffusion of the unstable regions and a slower decay in Rau. On the other hand,
if Re increases through a decrease in ν while the shear layer velocity is fixed, it leads
to an increase in Rau since Rau ∝ 1/ν. Figure 4(c) shows the effect of an increase in
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FIGURE 4. (a) Effect of Pr on the Rau for Ri0 = 0.12 and Re= 2000; (b) effect of Re on Rau

for Pr = 1 and Ri0 = 0.12; here Re is increased in the direction of the arrow from 1000 to
2000, 4000, 6000 and 8000; (c) effect of Ri0 on Rau for Pr = 1 and Re = 1000; here Ri0 is
increased in the direction of the arrow from 0.04 to 0.08, 0.12, 0.16 and 0.2; (d) critical Re at
which Rau becomes equal to 1000 at tm for various Prandtl number values. The horizontal axis
in (a–c) represent time elapsed post tm.

the Richardson number on Rau. Although at first glance (3.1) might suggest that an
increase in Ri0 should lead to an increase in Rau, the figure shows that this is clearly
not the case. An increase in Ri0 decreases Rau dramatically for two reasons: first, an
increase in Ri0 considerably increases the evolution time of the KH billows and leads
to a significant decrease in 1ρu by time tm. Second, the maximum amplitude of the
KH billow decreases as the stratification increases and this translates into a thinner
unstable layer. As Rau ∝ (δu)3, this effect leads to a highly significant decrease in Rau

as Ri0 increases.
It has been established in previous work (as reviewed in Peltier & Caulfield 2003)

that the Reynolds number must exceed a critical value for the SCI to be physically
realizable. To investigate the manner in which this critical value for Re changes with
Ri0 and Pr , figure 4(d) shows plots of the critical Reynolds number, Rec, versus
Ri0 for various Prandtl numbers. To construct this diagram, we have calculated the
minimum Re for which Rau exceeds 1000 at tm. This must be considered a qualitative
estimate of the occurrence of SCI for two reasons: first, it is an assumption that
Rac = 1000 can be used as a critical value for overturning of the cores’ unstable
regions; second, Rau must in addition remain super-critical long enough to allow the
SCI to evolve. The plot shows that the critical Re is not sensitive to Ri0 for Ri0 < 0.1.
However, for higher stratification levels, the flow must be at a higher Reynolds number
for the SCI to be effective. This is a consequence of the stabilizing effect of the
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stratification on the SCI. Moreover, the figure shows that as the Prandtl number
increases, the critical Re is reduced. Hence, one should be able to observe (in three-
dimensional DNS simulations) a transition of the shear layer to turbulence through
the convective instability at relatively low Reynolds number but at higher Prandtl
numbers than those employed previously in three-dimensional simulations discussed in
the literature. The Pr = 1 curve in figure 4(d) indicates that the critical Re is ∼600 for
Ri0 < 0.12 which is in accord with the finding of earlier studies.

We focus next on the minimum Richardson number on the braid. Figure 5 provides
plots of the calculated values of the braid Richardson number at the stagnation point
over a two-dimensional Re–Ri0 space for Pr = 1, 2, 4 and 7. The values of RiB are
indicated on each line in the figures with the thick black line corresponding to
RiB = 0.25. In agreement with (3.10), both an increase in Ri0 (at constant Re) and
an increase in Re (at constant Ri0) lead to a decrease in RiB and increase the possibility
of occurrence of the braid SSI. Comparison of all four frames shows that an increase
in Pr (at fixed Re and Ri0) leads to an increase in RiB, thus reducing the possibility of
occurrence of the braid SSI. In other words, at a fixed Ri0, the Reynolds number of the
flow must be higher for a larger Prandtl number for the braid shear instability to be
possible.

It was pointed out by Dritschel et al. (1991) and reinforced by Staquet (1995) that
RiB is not an entirely adequate measure of the propensity of occurrence of SSI of the
braid and that γs/Ωs also needs to be smaller than some critical value. Therefore, we
have plotted contours of γs/Ωs in figure 5(f ) of the figure and have also included
results from our two-dimensional simulations as data points represented by stars for
Pr = 1 in (a). Each star corresponds to a numerical simulation for which secondary
vortices were actually observed in the two-dimensional simulation. The two encircled
stars correspond to observation of secondary vortices on the braid which were not of
SSI type and which will be further discussed in MP2. Please note that some of the
simulations from which the starred data points in figure 5(a) are taken are not listed
in table 1 since they have been used only for the purpose of constructing figure 5(a).
There is a clear gap in the Ri0–Re plane between the curve on which RiB = 0.25
and the actual formation of vortices on the braid (in figure 5a). It has already been
discussed in Dritschel et al. (1991) that a rotation of a vorticity layer can suppress
the growth of instabilities growing on the layer. Once the braid has attained an almost
constant tilt angle, the shear instability has a limited time to emerge, otherwise other
instabilities may take control of the transition process and modify the braid structure
(e.g. the pairing instability) or destroy the organized flow structure required to support
it (such as the three-dimensional SCI). Therefore, for some of the points in the
gap between the thick line and the stars in figure 5(a), shear instability may have
insufficient time to evolve.

Furthermore, as the cores expand with time, the strain field induced by the vorticity
entrapped in them greatly suppresses emergence of the braid SSI while SCI can still
be expected to emerge. Dritschel et al. (1991) studied an instability growing on an
infinitely long tilted unstratified vorticity layer subjected to a pure strain field and
proposed that a value of γs/Ωs < 0.065 is needed for shear instability to amplify at
the stagnation point. This criterion was further investigated in the context of stratified
shear layers in Staquet (1995). We will however argue in § 4.1 that the instability
discussed in Dritschel et al. (1991) is not a shear instability and thus, γs/Ωs < 0.065
might not be a relevant criterion for braid shear instability in unstratified flow.
Nevertheless, the strain field still acts so as to decrease the growth rate of the braid
shear instability and γs/Ω can be treated as a rough measure for that. However,
it is better to average γs/Ωs over the extent of the braid. Comparing figure 5(a)
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FIGURE 5. Plots of RiB at the braid stagnation point as a function of Reynolds number
for: (a) Pr = 1; (b) Pr = 2; (c) Pr = 4; and (d) Pr = 7. Stars in (a) correspond to actual
numerical simulations for which secondary vortices were observed on the braid. The heavy
solid line in each frame marks the focus of points on which RiB equals the nominal critical
value of braid instability of 0.25. (Note that the vertical axes are Ri0 whereas the contours
are for RiB.) (e) Strain rate at the stagnation point as a function of Ri0. (f ) Map of the γs/Ωs
contour in the Ri0–Re parameter space for Pr = 1. The RiB contours in (a–d) are constructed
by using (3.10), (3.9), (3.8) and 1ρb = 2. Panel (e) is made by using (3.8) and model of CS76.
The second-order relation shown in the panel is a fit to the calculated data points. In (f ) Ω is
calculated from (3.6).
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and (f ) shows that SSI grows (non-encircled stars in figure 5a) for γs/Ωs < 0.05. The
two panels together suggest that as Ri0 is increased at a fixed Re, two factors lead
to promotion of the SSI: first, the strain field weakens (due to reduced core size)
and thus suppression of braid shear instability by the strain field diminishes; second,
RiB reduces because of the increased shear in the braid due to enhanced baroclinic
production of vorticity in the braid. For points in the stable regions (i.e. bottom left
corners) of figure 5(a,f ), either the braid is not shear unstable (due to large RiB) or
perturbations cannot grow due to suppression by the strain field. For the latter case,
if Re is sufficiently increased, perturbations will gain large enough growth rates to
overcome the suppressing influence of the strain field.

These issues motivate our stability analyses in the following section. We will
investigate the influence of stratification on various three-dimensional secondary
instabilities in MP2. At this point we only point out that an increase in the
stratification level decreases the strain field as shown in figure 5(e) (obtained using
(3.8)) which shows a quadratic relation between the strain rate and Ri0. Decreases
in γ and RiB due to increase in Ri0 both act in favour of emergence of braid
shear instability and therefore SSI can emerge at much lower Reynolds numbers in
agreement with figure 5(a). However, we show in the following section that the length
of the braid which is susceptible to shear instability decreases rapidly during evolution
of the KH wave due to growth of the vortex cores. This re-enforces the argument that
any discussion of criteria for braid shear instability needs to take the full braid into
account rather than just the structure of the braid at the stagnation point.

Based on figure 5, we may conclude that at a fixed Prandtl number, increases in
Ri0 and Re both promote the possibility of occurrence of the SSI on the braid by
reducing both RiB and γs/Ωs. And based on figure 4, we conclude that increase in
Re enhances chances of secondary convective instability in the cores while increase in
Ri0 reduces its chances. Hence, at lower Reynolds numbers and in circumstances in
which Ri0 is small we can expect the dominance of the convective instability, while at
larger Reynolds number with strong stratification, we can expect to see SSI. According
to figure 4(a–d), as Pr increases, the region in Re–Ri0 space of possible occurrence
of the SSI is shifted to higher Reynolds numbers. As increase of Pr also promotes
the probability of core convective instability, we conclude that increase in Pr (while
keeping other parameters constant) increases the probability of SCI, and decreases the
probability of SSI. Therefore, in salt-stratified shear layers where Pr is considerably
larger than heat-stratified flows, one needs to be at much larger Reynolds numbers
(compared with heat-stratified layers) for SSI to grow in abundance on the braid. This
is in agreement with the observations of Geyer et al. (2010).

Horizontally infinite stratified shear layers with RiB > 0.25 are known to be
susceptible to Holmboe instability provided that RB, the ratio of the braid’s vorticity
layer thickness to that of its density layer thickness, is large enough (at least >2). In
S03 it is shown that RB ' Prα where α = 0.36 for 1 < Pr < 7. This suggests that we
might expect Holmboe waves for Pr > 7 and RiB > 0.25 (the region to the right of the
thick line in figure 5d) to arise on the braid. To provide an adequate investigation of
this suggestion will however require further analysis which we will not pursue in the
present paper.

4. Non-separable stability analysis of the KH wave
In this section, we discuss the methodology to be employed to test the stability

of the two-dimensional nonlinear flow fields (obtained from numerical simulations)
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to three-dimensional perturbations. The method we employ is that developed by KP85
and employed previously by Smyth & Peltier (1991) and CP00 as reviewed in Peltier
& Caulfield (2003). This methodology is an extension of the earlier work of Clever
& Busse (1974) on the stability of two-dimensional steady-state convection against
three-dimensional perturbations. For additional details concerning the methodology, the
reader is referred to KP85.

Beginning from the Boussinesq governing equations introduced in § 2, we divide
the total flow fields into a basic time-evolving two-dimensional state, which is
represented by two-dimensional flow fields obtained from the DNS simulations, and
three-dimensional perturbation fields. This decomposition may be written explicitly as

f (x, y, z, t)= f̃ (x, z, t)+ f ′(x, y, z, t), (4.1)

where f represents any one of the three components of the velocity field or the density
or pressure field. The corresponding fields of the two-dimensional background KH
wave are represented by f̃ and the three-dimensional perturbations to the background
fields are represented by f ′. Upon substitution of (4.1) into the governing equations,
and linearizing in the three-dimensional fluctuations, the coefficients of the various
perturbation terms in the resulting equations comprise the KH wave fields Ũ, W̃ and
ρ̃ and their derivatives. These coefficients are all independent of the cross-stream
y-coordinate and are periodic in x with the same wavelength as the primary KH wave.
Hence, based on the basic ideas of Floquet theory (e.g. Jordan & Smith 1977), we
may separate the structures of the perturbation fields as

f ′(x, y, z, t)= ε f̂ (x, z, t)ei(bx+dy), (4.2)

in which f̂ (x, z, t) is periodic in x, ε is an ordering parameter and b and d are
the streamwise and spanwise wavenumbers of the three-dimensional perturbations.
Note that the total fields are periodic in x only if b is commensurate with λ, the
wavenumber of the KH wave. Equation (4.2) may be further simplified by noting
that experimental observations and high-resolution numerical simulations have shown
that the secondary instabilities of interest to us grow to finite amplitude very quickly
compared with the evolution of the original two-dimensional KH wave. Hence, we
may assume that the flow evolves on two separate time scales, the slower being that
of the background KH wave. We may therefore ignore the time dependance of the
Floquet coefficients and (4.2) is reduced to the form:

f ′(x, y, z, t)= ε f̂ (x, z)ei(bx+dy)+σ t, (4.3)

where σ is the complex growth rate of the disturbances. This time separation
is of course subject to justification a posteriori. Following KP85, the total fields
f̃ + f̂ ei(bx+dy)+σ t are substituted into the governing equations and the background two-
dimensional field is subtracted to obtain linearized equations at order ε:

σ û=−Ũ(∂x + ib)û− W̃ûz − (∂x + ib)Ũû− Ũzŵ− (∂x + ib)p̂+ Re−1∇2û, (4.4)

σ v̂ =−Ũ(∂x + ib)v̂ − W̃v̂z − idp̂+ Re−1∇2v̂, (4.5)

σ ŵ=−Ũ(∂x + ib)ŵ− W̃ŵz − (∂x + ib)W̃û− W̃zŵ− p̂z + Riρ̂ + Re−1∇2ŵ, (4.6)

σ ρ̂ =−Ũ(∂x + ib)ρ̂ − W̃ρ̂z − (∂x + ib)ρ̃û− ρ̃zŵ+ (RePr)−1 ∇2ρ̂, (4.7)

0= (∂x + ib)û+ idv̂ + ŵz, (4.8)
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where û, v̂, ŵ, ρ̂ and p̂ are the (x, z)-dependent parts of the streamwise, spanwise and
vertical velocity, density and pressure perturbations, respectively. A diagnostic equation
can be obtained for p̂ by combining (4.4), (4.6) and (4.8) to obtain

∇2p̂= Ri(∂x + ib)ρ̂ − 2((∂x + ib)Ũ(∂x + ib)û+ W̃zŵz

+ (∂x + ib)W̃ûz + Ũz(∂x + ib)ŵ). (4.9)

Replacing (4.8) with (4.9) decouples (4.5) from the rest of the system and we can
solve (4.4), (4.6), (4.7) and (4.9) for û, ŵ, ρ̂ and p̂. Either of the (4.5) or (4.8) may
then be used to calculate v̂ and the agreement between the two solutions for v̂ can be
employed as a measure of the accuracy of the calculations.

In order to convert the resulting equations into an eigensystem, the (x − z)
dependence of the solution fields are discretized using the Galerkin method. Details
of the discretization as well as of the solution for the eigenvalues and selected
eigenvectors are provided in the supplementary material (for original derivations refer
to KP85). The truncation level, N, used for the Galerkin expansions is chosen using
the truncation scheme of KP85 (see equation SM − (5.6) in the supplementary material
for details). We choose N = 37 based on the limitations imposed by the resolutions of
the numerical simulations used to provide the background flow information (see the
supplementary material for details).

Once the eigenvalues (σ, b, d) are found, the dynamical processes that govern the
evolution of a given disturbance may be diagnosed by means of the equation of the
perturbation kinetic energy defined by

K ′ = 〈(û∗û+ v̂∗v̂ + ŵ∗ŵ)〉, (4.10)

where stars represent complex conjugate and angle brackets represent the integral

〈〉 = 2π
λ

∫ 2π/λ

0

2π
d

∫ 2π/d

0

∫ HD

0
dx dy dz, (4.11)

where HD is the domain height. The growth rate of the perturbation kinetic energy of a
disturbance can be calculated following KP85 by using

σr ' 1
2K ′

dK ′

dt
=S h+S t + RiH +D/Re, (4.12)

where the terms on the right-hand side represent the contributions to the growth rate
of the perturbation kinetic energy K ′ due to the shearing (S h) and straining (S t)
deformations of the basic two-dimensional velocity field, convection associated with
unstable density gradients (H ), and viscous dissipation (D). Explicit expressions for
these terms are

S h=−〈(W̃x + Ũz) (û
∗ŵ)r〉/K ′, (4.13a)

S t =−〈 1
2(Ũx − W̃z)(û

∗û− ŵ∗ŵ)〉/K ′, (4.13b)
H = 〈(ŵ∗ρ̂)r〉/K ′, (4.13c)

D = 〈(û∗∇2û+ v̂∗∇2v̂ + ŵ∗∇2ŵ)r〉/K ′, (4.13d)

where Ũ and W̃ are the streamwise and vertical velocity components of the
background two-dimensional flow (represented by f̃ in (4.1)) and the quantities
denoted by ‘ˆ’ are the perturbation fields.

Prior to presenting the results obtained by the application of this methodology in
the following subsection, we require an estimate of the growth rate of the original
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KH wave, σKH . This is required to enable a rigorous a posteriori justification for
the assumed separation of time scales between that which governs the evolution
of the background state and that which governs the evolution of the perturbations
superimposed upon it. The requirement of a time scale separation may be represented
as

|σKH| � σr. (4.14)

Although we will not pursue this slightly more sophisticated method of analysis
herein, in circumstances in which the separation of time scales is questionable one
may invoke the time-averaged stability matrix methodology of Smyth & Peltier (1994)
to perform an optimal instability analysis that takes into account the influence of the
temporal variations in the basic state KH wave upon the secondary instability process.
Analogous to (4.12), σKH can be calculated using

σKH = 1
2KKH

d
dt

KKH (4.15)

where KKH is the evolving kinetic energy of the background KH wave which may be
represented non-dimensionally as

KKH = 〈(Ũ2 + W̃2)/2〉xz, (4.16)

in which 〈〉xz denotes integration over the x and z directions only. The background
KH velocities Ũ and W̃ at each point of the domain can be obtained from our
two-dimensional simulations using

Ũ = u− ū and W̃ = w− w̄, (4.17)

where (¯) denotes averaging in the streamwise direction and u and v are the total
velocities. The total kinetic energy in the two-dimensional simulation domain is simply

K = 〈[(u2 + w2)/2]〉xz, (4.18)

which itself may be subdivided into two components as

K = ¯K +KKH, (4.19)

in which the first term on the right-hand side is the average kinetic energy of the
evolving mean, background flow defined as

¯K = 〈ū2/2〉z, (4.20)

and the second term on the right-hand side of (4.19) is the kinetic energy associated
with the spanwise-averaged two-dimensional perturbation (defined in (4.16)).

4.1. Stability analysis for the case c1-1000-0.12
In this section, we describe the results of the stability analysis for a marginal case
located in the gap between the RiB = 0.25 line and the starred points in figure 5(a).
Specifically, we choose the case with Pr = 1, Re= 1000 and Ri0 = 0.12. This marginal
case is chosen since it has a braid Richardson number small enough to expect
secondary vortices to form on the braid and yet such vortices do not form in the
actual two-dimensional simulation due to influence of the strain field. Our main goal is
to quantify the influence of the vortex cores on the spatial extent and growth rate of
the braid shear instability.

Figure 6 shows the vorticity field for various times in the flow evolution and figure 7
shows the corresponding plots of the flow diagnostics. Time t = 60 is the time when
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–0.5 0 0.5 1.0

FIGURE 6. Vorticity contours at various stages of flow evolution for case c1-1000-0.12. The
horizontal and vertical axes represent x (for 0< x< 28.5) and z (for 3< z< 17), respectively.

the kinetic energy of the KH wave, KKH , reaches a peak (seen in figure 7b). This
time will be referred to as the time of ‘climax’ (denoted by t∗) of the primary
two-dimensional KH instability. Up to this point, the shear layer has rolled-up into
a spatially periodic sequence of growing cores leading to an increase in the total
potential energy of the system at the cost of the total kinetic energy.

The blue vorticity bands shown in figure 6 coincide with the unstable regions inside
the cores. At time t = 52, the first pair of unstable regions begin to form. Figure 7(c)
depicts the evolution of the corresponding Rau which grows with time, reaches a
maximum, and then decreases as both the δu and 1ρu decrease with time. We expect
the possibility of the shear-aligned convective instability (in a similar case, but in a
three-dimensional flow) to follow essentially the same evolutionary history as does
Rau.

Figure 7(d) shows evolution of the streamwise distance between the tips of the outer
most unstable regions in the two neighbouring cores, δpair . This demonstrates that the
two main vorticity bands in the neighbouring cores meet at a time close to t = 80. At
approximately the same time, the flow is deformed in the vicinity of the stagnation
point. This is a consequence of the change of the velocity field near the stagnation
point due to the advance of the thick vorticity bands in the cores. We will return to
further discuss this point shortly. It appears that the close encounter of vorticity bands
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FIGURE 7. Time evolution of: (a) total kinetic energy K normalized by its value at t = 0;
(b) kinetic energy of the nonlinear KH wave KKH normalized by K (0); (c) Rau; (d) δpair ; (e)
1zcores; and (e) the stagnation point Richardson number on the braid, RistagB .

in the cores with the stagnation point perturbs the flow structure and affects the strain
field at the stagnation point. As this strain field is essential for maintaining the general
structure of the KH wave, its modification marks the beginning of the pairing process.
This is shown by figure 7(e) in which we have plotted the absolute value of the
difference between the maximum height of the upper surface of the two neighbouring
vorticity cores in the wave train, 1zcores. The growth of this parameter to values larger
than zero indicates the onset of the pairing process.

Once the pairing process begins, it is followed initially by complete draining of
braid vorticity (at t = 99 in figure 6) and subsequently by formation of a new braid.
The pairing process leads to a second period of dramatic increase in the kinetic energy
of the two-dimensional wave (KKH) as shown in figure 7(b). This is accompanied
by a further rise in the potential energy of the system due to the coalescence of the
two cores and hence the total kinetic energy of the system undergoes a secondary
fall (figure 7a). Figure 7(f ) shows the evolution of RiB at the stagnation point. Even
though it has a value below 0.25, no SSI is observed prior to pairing. Although
secondary vortices do form on the braid after the two-dimensional pairing process is
completed (not shown in the figures), we are not concerned with them at this stage
of flow evolution as we suspect that in a three-dimensional flow, three-dimensional
instabilities will most probably have already occurred, thus rendering the paired basic
state physically meaningless. Figure 7(f ) demonstrates that RiB decreases to 0.1 during
the phase of braid deformation (t = 80–100) which might suggest a greater chance for
the shear instability to onset. However, that possibility is suppressed in this case by
the onset of the pairing process. As we show in the companion paper MP2, at higher
Reynolds numbers the braid deformation may amplify much earlier thereby allowing
secondary vortices to develop prior to pairing.

We begin our secondary stability analysis for this case at the climax time (t∗ = 60).
At this time, the cores have not grown overly large so as to impinge upon the
stagnation point and there is an extended length of braid which might be susceptible
to SSI. Figure 8 shows the perturbation kinetic energy and density eigenfunctions for
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FIGURE 8. (a) The perturbation kinetic energy eigenfunction, K ′; (b) density eigenfunction
for the SSI with d = 0 and for the time t∗ = 60; (c) the density eigenfunction for the d = 0 SSI
mode at t = 67; (d) growth rate versus the spanwise wavenumber d for the SSI mode at t = 60
and t = 79 (dashed lines), the SCI mode at t = 60 and t = 79 (solid lines), the SPI mode at
t = 79 and t = 82 (dashed-dotted line) and the pairing mode (thin dashed line in the bottom
left corner of the plot); (e) same as (d) but zoomed over the (0 < σ < 1, 0 < d < 0.5) range.
The horizontal and vertical axes in the panels correspond to x and z, respectively, and can be
used to make comparisons with figure 6.

the fastest growing mode at time 60 for d = 0 (i.e. two-dimensional perturbations).
The K ′ eigenfunction shows that the mode is centred precisely on the braid and
has a braid streamwise wavelength of 1.38 (wavenumber of 4.56) near the stagnation
point. It also has a growth rate of σr = 0.69. The wavelength is ∼4.6 times the
braid thickness at the stagnation point which is smaller (due to the action of the
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strain field) than the factor of ∼7 corresponding to infinite horizontal shear layers.
The wavenumber and the growth rate are close to those found by S03 by performing
secondary stability analysis for an infinitely long tilted vorticity filament. We expect
the flow field induced by the growing cores to considerably affect the eigenfunctions
of this mode during flow evolution. The next few fastest growing modes of instability
for d = 0 are all found to be similar to that shown in figure 8 but with slightly
smaller growth rates and different braid streamwise wavenumbers. To the best of
the authors’ knowledge, SSI has always been assumed to be two dimensional (as
might be suggested by a simple extension of Squire’s (1933) theorem). However,
according to our analysis, unstable modes also exist for d > 0 and hence SSI is of
a three-dimensional nature. Figure 8(d) shows the variation in the growth rate of the
fastest growing mode of SSI with variations in the wavenumber, d, for t = 60, 79.
Although at t = 60 the SSI seems to have the fastest growth rate at d ∼ 0, at t = 79
its growth rate increases with d and there seems to be a high-wavenumber cut-off
limit at d ∼ 4. It should be noted that Squire’s theorem applies to parallel flows and
therefore should not be extended to the braid of a KH billow which is subject to a
strain field. Even for a parallel shear flow, there are circumstances in which Squire’s
theorem permits the possibility of the flow bifurcating directly to a three-dimensional
state (see Smyth & Peltier (1990) for an example). Since the fastest growing mode is
of long wavelength (having a wavelength comparable to the background KH wave), a
long spanwise domain extent is required for three-dimensional simulations to capture
it. As SSI has maximum growth rate at d close to zero, similar to pairing instability it
is most likely to arise as a two-dimensional structure unless there are long-wavelength
spanwise perturbations in the system. It has been shown in the literature (Ashurst &
Meiburg 1988 and Cortesi et al. 1998, among others) that even very small amplitude
spanwise perturbations of proper wavelengths can lead to three-dimensional pairing.
It will be interesting to further investigate, through three-dimensional simulations, the
role of spanwise perturbations on SSI.

Even though our stability analyses reveal the SSI modes, they are not realized in
our two-dimensional simulation shown in figure 6. To demonstrate the reason for this,
we track evolution of the SSI for various times during flow evolution (50< t < 90) by
repeating the stability analysis. The result is illustrated in figure 17 by the solid line
with open circles which establishes that as the cores grow in the streamwise direction
beyond the climax time, the growth rate of the SSI mode diminishes. Moreover, the
along-braid extent of the SSI modes decreases with time beyond t∗. This can be seen
by comparing figure 8(e), which shows the density eigenfunction for the d = 0 SSI
mode at t = 67, with figure 8(b) for t = 60. The same is true for the d > 0 SSI
modes as can be seen in figure 8 by noting that the family of SSI modes have larger
growth rates at t = 60 compared with t = 79 (figure 8d). The continuous decrease in
the growth rate and spatial extent of the instability with time strongly reduces the
probability of formation of vortices on the braid. We suggest that this is the reason
behind the ‘gap’ in figure 5(a).

Next we turn our attention to the braid deformation at the stagnation point. In
figure 9, we overlay the vorticity contours with instantaneous streamlines for a
sequence of times from t = 67 to t = 82. The RiB contours are also shown on the same
figure for t = 79 and 87. As the outermost vorticity bands in the cores (blue bands)
approach the stagnation point, the streamlines adjacent to the braid are deformed and
stretched towards the vorticity bands due to the velocity field induced by the negative
vorticity in the bands. By t = 79, the streamlines are significantly deformed compared
with their initial orientation and a small recirculating region forms in the middle of
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FIGURE 9. The top row and the left panel of the bottom row show the vorticity contours
overlaid by the streamlines zoomed on the stagnation point. The contour levels are similar
to figure 6. The centre and right figure in the middle row show the contours of the braid
Richardson number overlaid by streamlines. Any region with RiB > 0.25 is whited out. The
final row is a schematic plot which shows the streamlines before and after the core vorticity
bands have made the stagnation point to split into two and move further away from the middle
of the braid.

the braid. This region reaches a maximum strength at t = 82 before dissipation due to
draining of the vorticity from the braid as the vorticity bands of the cores completely
surround the braid. As mentioned earlier, this draining event also marks the onset of
the pairing instability. To better understand how the streamline deformation leads to
the emergence of the recirculating region, a schematic plot is also included in the
bottom row of figure 9 which shows that at earlier stages in the evolution of the
flow the streamlines have the form of a pure strain field. However, as the streamlines
become deformed due to the influence of the approaching cores, the stagnation point
is split as indicated by the stars in the schematic. The velocity field along the braid
takes the form of a to-the-right and upward flow on the upper surface of the braid
and a to-the-left and downward flow on the lower surface of the braid. This makes
it possible for a recirculating region to form between the two starred points. Even
though this region dies out fairly rapidly in this case, we show in MP2 that in certain
circumstances it may grow so significantly as to produce important modifications of
the flow, including both the braid and the core.

To better understand the effect of the braid deformation on the global structure of
the KH billows, we have performed additional stability analyses for t = 80 and t = 87.
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FIGURE 10. The density eigenfunction for: (a) the fastest growing mode d = 0 mode of the
SVBI at t = 80; and (b) the fastest growing two-dimensional mode at t = 87. (Note that b
does NOT represent the SVBI.)

The fastest growing mode for t = 80 is shown in figure 10(a). The instability is not
limited to the braid and it also affects the vorticity bands in the core. This can lead
to formation of isolated vortices inside the cores as shown by the fastest growing
mode of instability at t = 87 in figure 10(b). The formation of these vortices, together
with the formation of the recirculating region in the middle of the braid have been
previously reported in the simulations of Staquet (1995). We refer to this instability as
the secondary vorticity band instability (SVBI) since it is triggered by the fusing of the
vorticity bands inside the core. This instability has a much shorter lifetime and smaller
growth rate compared with the SCI.

The maps of RiB in figure 9 establish that during the period of braid deformation,
the portion of the braid in which RiB < 0.25 is limited to the deforming section
around the stagnation point. The two maps show that RiB decreases with time in
the deforming region and tends to zero as the braid vorticity is drained. This rapid
decrease in RiB renders the region more susceptible to shear instability. Figure 10(b)
establishes the possibility of formation of two vortices at the tips of the deformed
braid region shown in figure 9. Our simulation demonstrates that this does not occur
as the pairing process dominates. However, if the pairing process were retarded, we
would expect that the vortices would form. This happens in a similar case but for
Re = 2000 as shown for case c1-2000-0.12 in the supplementary material and further
discussed in MP2.

Figure 8(d) shows that for small values of d and at early stages of flow evolution,
SSI modes are dominant insofar as their growth rates are concerned. However, for
d sufficiently large, secondary three-dimensional convective instabilities are predicted
by the stability analysis. The structure of the convective modes along with their
finite-time evolution has been studied in detail in KP85 and CP00 and hence will not
be discussed here. It suffices to say that unlike the SSI group, the SCI modes are
oscillatory. In figure 8(d) we have plotted the variations of the growth rate versus the
spanwise wavenumber d for the fastest growing SCI mode for times 60 and 79. For
d < 2, the SSI modes dominate at t = 60 while for larger values of d the SCI mode
dominates by a wide margin. This domination continues for an extended period of
time as is established by comparing the t = 79 SSI and SCI curves in figure 8(d).

Another oscillatory secondary instability supported by the evolving basic state KH
wave is the pairing instability, the two-dimensional version of which was discussed in
detail in KP89. We have found a continuous range of small wavenumbers for which
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FIGURE 11. (a) The perturbation kinetic energy eigenfunction, K ′; (b) density
eigenfunction; (c) vorticity eigenfunction; and (d) S h eigenfunction for the fastest growing
mode of SPI with d = 7 and for the time t = 82.

pairing can occur. The thick solid line in figure 8(d) shows the corresponding growth
rate curve for the pairing modes. The fastest growing mode is the two-dimensional
pairing mode (d = 0) and a high-wavenumber cut-off limit of d ∼ 1 is found by
our analyses. The three-dimensional nature of the pairing instability has already been
pointed out in the theoretical studies of Pierrehumbert & Widnall (1982) and Smyth
& Peltier (1994) for homogeneous shear layers. Our analyses extend this result to
stratified shear layers. As pointed out by Pierrehumbert & Widnall (1982), d > 0
pairing modes can lead to ‘helical’ or ‘localized’ pairing of vortex cores. The pairing
mode retains a growth rate close to its early values for an extended period of time.
In most of our two-dimensional simulations, it ultimately leads to an actual pairing of
the cores. A fundamental issue is under what circumstances pairing may be entirely
prevented, it being unusual in the high-Reynolds-number circumstances characteristic
of the atmosphere and oceans.

The final instability revealed by our analyses for this case is one which is also
three dimensional. Figure 11 illustrates several of the eigenfunctions for this instability
at time t = 82. This mode is composed of a single localized counter-rotating pair of
vortices that surround the stagnation point. The growth rate of this family of modes
is independent of the streamwise wavenumber (parameter b) and so their structure
may vary from one braid to the next. For example, the instability might occur only
on every other braid etc. Since this mode is localized on the stagnation point, we
refer to it as the secondary stagnation point instability (SPI). As will be discussed in
detail shortly, this mode emerges due to the action of the strain field induced by the
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vortex cores on the braid. Unlike SVBI, however, this mode is local to the stagnation
point. There is a continuous range of spanwise wavenumbers over which the SPI
exists. Figure 8(d) plots the variations of the growth rate versus d for times 79 and
82. Both curves show a peak around d = 7 which is close to the value of d = 8.5
corresponding to the fastest growing mode of the convective instability of the core.
Comparing the two curves shows that the strength of the instability increases rapidly
over a very short period of time. Near time t = 80, the fastest growing SPI mode has
a larger growth rate than the fastest growing SCI mode. On this basis we suggest that
if, in a three-dimensional flow, onset of the SCI has yet to occur, the SPI would have
a significantly better chance of emerging compared to all of the other instabilities we
have identified. The SPI modes shown in figure 11 emerge in our stability analysis
once the cores have grown large and their outermost unstable regions have become
extended close to the stagnation point. As the growth rate of the SPI shows little
sensitivity to the spanwise wavenumber for large wavenumbers, similar to the SCI
this mode is capable of injecting energy into small-scales facilitating a transition to
turbulence.

This mode and its distinction from the SSI was briefly noted in KP89 for Re = 300.
However, further investigation of the mode was not pursued in that study due to
the insufficient degree of convergence of its eigenfunction and also because of its
considerably smaller growth rate compared with the SCI at the low Reynolds number
of 300. Note that the two SPI (σ − d) curves in figure 8(d) do not extend to d = 0
(while KP89 reported this mode only for d = 0) because at small values of d, SSI
modes dominate the hierarchy of eigenvalues, making the detection of SPI at d = 0
difficult. SSI modes did not exist at the low Reynolds number considered in KP89.
There are two major differences between SPI and SSI. First, SPI is local to the
stagnation point whereas SSI vortices are advected (upon formation) by the braid
velocity field towards the vortex cores. Second, SPI is a highly three-dimensional
mode with large growth rates at high wavenumbers whereas SSI is a long wave
mode which will most probably develop in a two-dimensional fashion unless there is
appropriate spanwise perturbations and the flow domain extends sufficiently large in
the spanwise direction.

To further analyse the evolution of SSI and SPI, we need to study the contributions
made to the growth rates of their perturbation kinetic energy K ′ due to the shearing
(S h) and straining (S t) deformations of the basic two-dimensional velocity field,
convection associated with unstable density gradients (H ) and viscous dissipation
(D), all introduced in (4.12) and (4.13). As both instabilities are local to the braid,
it is important that we calculate the shear and straining contributions to their growth
in a reference frame aligned with the braid. Therefore, we define a right-handed
local co-ordinate systems attached to the braid at the stagnation point and with the
x-axis aligned with the braid and the z-axis normal to the braid. For the purpose of
transformation to this braid coordinate system, the global coordinate system is denoted
by X–Z. Here u and w refer to velocities in the braid local coordinate system while
U and W refer to those in the global coordinate system. The quantities in the two
coordinates are related through

U = u cosψ − w sinψ, W = u sinψ + w cosψ, (4.21)
u= U cosψ +W sinψ, w=−U sinψ +W cosψ, (4.22)
X = x cosψ − z sinψ, Z = x sinψ + z cosψ, (4.23)

where, as before, ψ is the braid tilt angle.
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Consistent with our formulation of the stability problem, ‘˜’ and ‘ˆ’ will refer to
background flow and perturbation field quantities in what follows. From (4.13) the
normalized (by K ′) eigenfunction of the shearing and straining contributions of the
background flow to an instability are

Sheareig =−(W̃X + ŨZ) (Û
∗Ŵ)r /K

′, (4.24)

Straineig =− 1
2(ŨX − W̃Z)(Û

∗Û − Ŵ∗Ŵ)/K ′. (4.25)

Substituting (4.21) and (4.22) in (4.24) and (4.25) and using (4.23), it follows that
the normalized shearing and straining contributions of the background flow to the
eigenfunction of an instability in the braid reference frame become

Shearbraideig =−
1

K ′

(
F cosψ − G

2
sinψ

)
(w̃x + ũz)

=
(

sinψ
2F
+ cosψ

G

)
(2 sinψF Straineig − cosψ G Sheareig) (4.26)

Strainbraid
eig =−

1
K ′

(
F sinψ + G

2
cosψ

)
(ũx − w̃z)

=
(

sinψ
G
+ cosψ

2F

)
(sinψ G Sheareig + 2 cosψF Straineig), (4.27)

where

G = (û∗û− ŵ∗ŵ) cos(2ψ)− (ûŵ∗ + û∗ŵ) sin(2ψ), (4.28)
F = [ 12(û∗û− ŵ∗ŵ) sin(2ψ)+ (û∗ŵ cos (ψ)2−ûŵ∗ sin (ψ)2)]

r
. (4.29)

As the buoyancy flux and dissipation terms in (4.12) are independent of the choice
of coordinate system, sum of the shearing and straining terms will also be independent
of choice of the coordinate system and so by combining (4.26) and (4.27) we get

Sheareig + Straineig = Shearbraideig + Strainbraid
eig . (4.30)

The shearing and straining contributions of the background flow to the growth rate of
an instability can be calculated form:

S hb = 〈Shearbraideig 〉xz
, S tb = 〈Strainbraid

eig 〉xz
, (4.31)

and again we note that S hb +S tb =S h+S t.
Figure 12 shows contours of Shearbraideig and Strainbraid

eig for the climax time t∗ = 60
and t = 67 for the SSI. The negative contribution from D was less than 2 % of σr

at all times and the contribution from H was negligible. The figure shows that the
SSI is almost entirely driven by the velocity shear in the braid while the strain field
act so as to suppress the instability. Comparing figure 12(b) and (d) shows that the
suppressing influence of the strain field grows both in magnitude and spatial extent
along the braid while S hb decreases with time. This increasing suppression leads to
total elimination of the possibility of emergence of SSI by t = 82. This is shown in the
table in figure 12 by providing the relative ratio of S hb to S tb. The value of the ratio
near −1 at t = 82 corresponds to a growth rate of nearly zero as σr ∼S hb +S tb ∼ 0.
The rapid increase in |S tb/S hb| with time for the case under consideration explains
the lack of formation of secondary vortices on the braid in the two-dimensional
simulation which provided the background flow for the stability analyses. For the SSI
to emerge in the form of a number of vortices on the braid, the Reynolds number
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FIGURE 12. Contours of Shearbraideig and Strainbraid
eig for the SSI of the braid at t = 60 and

t = 67: (a) Shearbraideig contour for SSI at t = 60, σr = 1.0,S hb = 1.63,S tb = −0.55; (b)
Strainbraid

eig contour for SSI at t = 60, σr = 1.0,S hb = 1.63,S tb = −0.55; (c) Shearbraideig

contour for SSI at t = 67, σr = 0.51,S hb = 0.93,S tb = −0.40; (d) Strainbraid
eig contour for

SSI at t = 67, σr = 0.51,S hb = 0.93,S tb = −0.40. The table shows the increase with time
of the negative relative influence of strain field on the growth of the SSI.

needs to be sufficiently high (the critical point depending on both Ri0 and Pr) so that
a small |S tb/S hb| ratio is maintained at early stages of flow evolution and before
the strain field influence dominates. At lower Reynolds numbers, formation of shear
vortices can still be excited on the braid by other instabilities (as will be discussed in
the companion paper MP2), or other types of vortices such as the SPI-SVBI family
might roll up on the braid.

Figure 14(a,b) show contour plots similar to figure 12 for the SPI mode with
d = 7 and at t = 89. The SPI is entirely driven by the strain field with the shearing
term (S hb) making a negative contribution. Therefore, a vorticity layer subjected to
a pure strain field can accommodate a family of three-dimensional instabilities at the
stagnation point which exist over a much broader range of spanwise wavelengths
compared with the shear instability. Moreover, the shear acts so as to suppress the
strain field-induced instability while the strain field acts so as to suppress the shear
modes. Contributions from H and D to growth rate of SPI are also very small similar
to the SSI. A necessary condition for the SPI to exist is to have S tb >S hb.

To extend discussions of figure 9 on the physical origin of SPI, figure 14(c,d) show
plots of the perturbation kinetic energy eigenfunction and the perturbation velocity
field (overlain on the vorticity contours of the background KH wave), respectively.
They show that the onset of the SPI is indeed triggered by interaction of the core’s
outermost negative vorticity (blue) band and the braid at the stagnation point. This
allows for formation of two stagnation points at the tips of the cores’ blue vorticity
bands. As figure 14(d) shows, this interaction leads to splitting into two of the braid
stagnation point (in agreement with earlier discussion of the t = 82 time frame and the



34 A. Mashayek and W. R. Peltier

d
0

0.5

1.0

1.5

2.0

2 4 6 8 10 12

FIGURE 13. Growth rate versus spanwise wavenumber curves for two cases at a Re = 2000.
Both cases include d = 0 data points (encircled) and suggest that the growth rate curves
should extend to d = 0 in principle.

schematic in figure 9) and allows for formation of a recirculating region which grows
by extracting energy from the strain field.

It is important to note that the SPI should not be confused with the so-called
hyperbolic instability. The classical hyperbolic instability is that which is responsible
for the occurrence of the ‘rib-vortices’ that develop in unstratifed parallel shear flow
and which are precursory in such flows to transition. Very detailed analysis of this
instability have been published in the previous literature on non-separable instability
analysis (see Smyth & Peltier 1994, Potylitsin & Peltier 1998 and CP00 for details).
The rib vortices generated by classical hyperbolic instability are extensive structures
that develop between adjacent vortex cores rather than being isolated initially to
the hyperbolic fixed point which is the case for what we are referring to as the
SPI. Furthermore, although the classical hyperbolic instability is intrinsically three
dimensional, this is not the case for the SPI that occurs in stratified flow. The SPI
exists over a range of spanwise wavenumbers that includes d = 0 (i.e. in which case it
is a two-dimensional mode). However, it is difficult for our methodology to determine
growth rates for SPI modes with small spanwise wavenumbers, as the top of the
list of unstable modes found by our non-separable stability analysis becomes overly
crowded with large families of pairing, SSI and SCI modes (as shown in figure 6e).
Therefore, detection of SPI as d tends to zero becomes overly cumbersome. However,
in principle, we could complete the SPI curve all of the way to d = 0 by increasing
the resolution greatly and checking the list of eigenmodes all the way down to number
20 or so.

To verify that the SPI curves in figure 8 should extend all of the way to zero,
we set d to be exactly equal to zero in our analysis. This eliminates all SCI modes,
as well as many SSI modes and pairing modes and substantially ‘cleans up’ the
spectrum and allows the weakly growing SPI mode to rise further up the list of
unstable structures. Figure 13 shows the growth rate curve for SPI for two different
cases at higher Reynolds number of 2000 (we consider higher Re as it is easier to
detect SPI at d = 0 at higher Re; these two cases will be discussed in detail in MP2)
plotted against d. The figure explicitly includes the case d = 0 and unambiguously
demonstrates that for both values of the initial Richardson number the growth rate for
the two-dimensional version of the SPI mode is simply an extension of the growth rate
curve for three-dimensional modes to the d = 0 limit.
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FIGURE 14. Contours of (a) Shearbraideig contour for SPI at t = 89, σr = 0.8,S hb =
−0.16,S tb = −0.9, (b) Strainbraid

eig contour for SPI at t = 89, σr = 0.8,S hb = −0.16,S tb =
−0.9 and (c) perturbation kinetic energy for the SPI at t = 82; (d) the perturbation velocity
field overlain on the vorticity contour of the background KH wave.

At this point it is necessary to discuss the interpretation of the results presented
in Dritschel et al. (1991) who analysed the stability against two-dimensional
perturbations of a tilted two-dimensional unstratified inviscid vorticity layer subjected
to a pure strain field. We believe that the unstable modes revealed by their analyses
were of stagnation point type rather than the ‘conventional Rayleigh shear instability’
as referred to in that study. Their analyses reveal a phase-locked mode growing at
the stagnation point. The finite amplitude form of that mode corresponds to roll-up
of a vortex at the stagnation point with the braid streamwise wavelength of the mode
increasing and its growth rate decreasing due to the strain field. To provide convincing
evidence for this interpretation, figure 15 shows evolution of the SPI mode at the
stagnation point for two different cases. Comparison of this figure with figure 17 of
Dritschel et al. (1991) reveals clear similarity: namely a change in slope of a segment
of the braid at the stagnation point followed by roll up of the segment into an isolated
vortex at the stagnation point. There are also differences between the plots of figures
15 and 17 of Dritschel et al. (1991) in that in our cases the instability interacts
with the growing and approaching vorticity bands inside the primary KH vortex cores.
Nevertheless, we expect that the two instabilities are plausibly the same.

Differentiation between the shear instability mode and the SPI on a vorticity
filament (such as the braid) is critical for several important reasons. First, our stability
analyses demonstrate that the origins of the two instabilities are distinctly different
(one extracting its energy from the strain field and the other from the velocity shear)
and a great difference in the range of spanwise wavenumbers over which they exist
(SSI being a long-wave semi-two-dimensional mode while the SPI is highly three-
dimensional and exists over a broad range with a high wavenumber for its fastest
growing mode). Moreover, confusion regarding the origins of the two modes can be
misleading in interpretation of numerical simulation results. It needs to be pointed out



36 A. Mashayek and W. R. Peltier

FIGURE 15. Evolution of the SPI is shown by plots (based on the results of two-dimensional
simulations) of vorticity contours at the stagnation point for two different cases. Contour plots
include 10 levels between +0.5 and +1.5.

that observational similarities can exist between finite amplitude SPI at low Re and a
shear-induced vortex formed on the braid in contour plots based on two-dimensional
simulation, Staquet (1995) appears to have incorporated several SPI vortices in her
analyses of the parameter regime in which SSI may emerge. A complete energetics
analyses of the braid vortices and recognition of the difference in phase speed of the
SSI and SPI vortices (with SPI being phase locked) aids significantly in distinguishing
between the two modes even in the results of two-dimensional simulations.

The stagnation point criterion proposed by Dritschel et al. (1991), however, is
relevant to the possibility of occurrence of SPI in a two-dimensional flow. Our
numerical simulations reveal emergence of SPI on the braid for γ /Ω < 0.1 for Pr = 1
which is close to the value of 0.065 proposed by Dritschel et al. (1991) for an
inviscid unstratified vorticity layer. One can construct approximate maps of γ /Ω
at the stagnation point for various values of the Prandtl number by employing the
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FIGURE 16. (a) Perturbation kinetic energy of the SSI mode for case c1-1000-0.12 for
t = 73; (b) density contour plot for a case with Pr = 12, Re= 6000 and Ri0 = 0.12.

quadratic γ − Ri0 relation employed in figure 5(e) along with the expression

Ω =−
(

2
π

)1/2Re1/2Ri0 sinψ1ρb Pr
β−1/2

γ
1/2
s

, (4.32)

proposed by S03 for maximum braid vorticity (β = 0.63 for 1 < Pr < 7). One such
map for Pr = 1 was provided in figure 5(f ). As SPI is a highly three-dimensional
mode, we postpone the investigation of its finite amplitude growth to further study
which will involve three-dimensional simulations. Two-dimensional results such as
those shown in figure 15 should be treated with caution.

Finally, we point out that the SSI eigenfunction revealed in our analyses in not
limited to the braid. As figure 16(a) shows, the entire length of the initial vorticity
layer at time t = 0 (including the parts rolled-up in the cores and the part connecting
the cores, i.e. the braid) remains susceptible to shear instability with the wavelength
of the unstable mode being proportional to the reduced thickness of the vorticity layer.
For low-Reynolds-number and low-Prandtl-number flows, the braid accommodates
almost all of the perturbation kinetic energy of the SSI mode as shown in (a) of
the figure and also in figures 12 and 14. However, at sufficiently large Re and Pr
values, the thinning of the vorticity bands inside the cores during the roll-up process
increases the gradients across them and overcomes the efficient diffusion inside the
cores in such a way that the effective Richardson number of the layers inside the cores
becomes subcritical (whatever the critical value might be) and shear instability can
grow. To confirm this, we have performed a two-dimensional simulation at Pr = 12
and Re = 6000 and for Ri0 = 0.12. A density contour plot for this case is shown in
figure 16(b). For this case, shear instability appears earlier and with greater intensity
on the vorticity layers at the periphery and interior of the cores (compared with that
of the braid). It is important to note that the shear unstable regions inside the core
form at the top and bottom boundary of the convectively unstable regions therefore
allowing the possibility of excitation of overturning of those regions at the same time
(i.e. emergence of the SCI). For this case, the SPI is the first instability to emerge on
the braid and is responsible for formation of several shear vortices on the braid. This
extended SSI mode may partially explain the observation of well-mixed core interiors
in salt stratified estuarine shear flows as reported in Geyer et al. (2010). It is possible
that at very high Reynolds number (the value of which will critically depend on both
Pr and Ri0), shear vortices can form on the braid as the primary KH wave rolls up.
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FIGURE 17. (Colour online) The results of the stability analysis for the fastest growing
modes of various modes during the evolution of case c1-1000-0.12: The solid curve with
filled circles for SCI with d = 8.5, the solid line with open circles for SSI with d = 0, the
solid line with diamonds for the pairing instability, the solid line with filled triangles for SPI
with d = 7, the dashed curve with no marker for the SVBI with d = 0, and the thin solid line
(almost coincident with the σ = 0 axis) for the growth rate of the background KH wave, σKH .
The symbols show the actual data points for which the analysis has been done while the lines
are spline fits. The vertical dashed line shows the time of maximum K ′, t∗.

It will be interesting to investigate whether in those circumstances SSI will be capable
of facilitating a rapid and early transition to turbulence eliminating any chance of
emergence for the three-dimensional instabilities we have found to be dominant in the
Re < 104 regime. The extension of the braid shear instability to vorticity bands inside
the cores has already been reported in Fontane & Joly (2008) for KH waves growing
on the interface between two fluids. However, our analyses reveal their existence in
the context of stratified shear layers and show that in the regime of very large Pr and
Re, the braid in a KH billow formed in a stratified layer tends to act in a way that is
similar to an interface between two fluids.

5. Discussion and conclusions
Figure 17 plots the growth rate of the fastest growing modes of the set of secondary

instabilities we have identified for the case c1-1000-0.12. These growth rates must be
compared with that of the time scale of evolution of the background KH wave to
verify the validity of our assumption of the existence of a separation of time scales
between the secondary instabilities and the basic state wave. The growth rate of the
primary KH billow (obtained from (4.15)) is plotted in figure 17 as a thin solid line
which almost coincides with the σr = 0 axis. The curve has a maximum value of 0.017
while the minimum value for the mode with the smallest growth rate (i.e. the pairing
mode) is 0.138. This confirms the existence of an appropriate time scale separation.

Figure 17 shows that over almost the entire time period between t∗ and the onset of
pairing which commences at t ∼ 85 (in our two-dimensional simulation and not in a
full three-dimensional flow field) as shown in the figure by the second vertical dashed
line, the SCI dominates the other instabilities by a wide margin. Our earlier analysis
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in § 3.3 also found the c1-1000-0.12 case to be in the zone of dominance of the SCI.
Since the onset of the SCI is followed by a fast transition to turbulence, emergence of
SCI will most probably partly or entirely suppress the emergence of other secondary
modes. It was predicted by our heuristic model that the SSI becomes stronger as
Re and Ri0 increase while the probability of SCI occurrence decreases with increase
in Ri0. We will investigate these predictions further in MP2. It will be interesting
to explore regions in parameter space where two or more of these instabilities can
coexist, or where some may precede the secondary convective instability.

Figure 17 shows a monotonic decrease with time in the growth rate of SSI. This is
due to the growing negative influence of the straining contribution of the background
flow to the growth of the instability as explained in discussion of the table related to
figure 12.

According to figure 17, the SPI is characterized by a non-monotonic behaviour,
whereas the SSI mode becomes weaker monotonically and the growth rate of the
pairing instability shows long-period fluctuations around a mean. This is because the
pairing instability depends only on the large-scale structure of the flow whereas the
SSI depends on the braid structure (which changes continuously) and the SPI is
sensitive to the flow variations at the stagnation point.

An important point follows by comparing the SCI curve in figure 17 with the Rau

shown in figure 7(c). This comparison demonstrates that Rau becomes subcritical at
approximately the same time as the growth rate of the SCI mode sharply diminishes.
This reinforces the validity of our assumption in the construction of the heuristic
model that Rau provides an acceptable measure of the probability of occurrence of the
secondary convective instability. Comparing the growth rate of the SCI (for Re= 1000)
to the values reported by KP85 (for Re= 300) reveals considerable increase in growth
rates with the Reynolds number. This is in agreement with the predictions of our
heuristic model.

The probability maps (figures 4 and 5) produced on the basis of the heuristic model
suggested that there should exist a wide range in this parameter space in which both
braid shear and core convective instabilities may exist in principle. Increase in Re
promotes both instabilities while increase in Ri0 promotes braid shear instability and
acts against the probability of occurrence of convective instability. Increase in Pr on
the other hand acts in favour of the secondary convective instability and to suppresses
the braid shear instability. The Prandtl number influence has important implications for
oceanic shear flows and will warrant further investigation.

Since most of the simulations in the published literature devoted to studying the
secondary instability of the braid have been restricted to two space dimensions, we
questioned the extent to which the results of those studies are relevant to three-
dimensional reality. Figure 17 in particular reveals the existence of a number of highly
three-dimensional instabilities some or all of which will almost certainly coexist with
(if not precede) the two-dimensional instabilities which have been discussed in the
two-dimensional simulation-based literature. Therefore, the relevance of such studies
to the evolution of a three-dimensional flow, especially in the post-transition phase, is
questionable.

We compared the probability map for occurrence of the secondary braid shear
instability with the results of our two-dimensional simulations for a wide range of
Reynolds and Richardson numbers and for unit Prandtl number. We identified a
gap between the supercritical region in the Re–Ri space in which SSI might occur
(based on the braid Richardson number) and the actual region in which secondary
vortices form on the braid in our two-dimensional simulations. This gap exists due
to the stabilizing influence of the strain field induced by the vortex cores on the
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braid. Our maps of braid Richardson number and γ /Ω show that SSI is likely to
emerge for RiB < 0.25 and γs/Ωs < 0.1. We have argued that since the existence of a
distinct SPI instability was not recognized in the study of Staquet (1995) due to the
two-dimensional nature of the study, it was mistaken for SSI. We have also argued
that the shear instability discussed in Dritschel et al. (1991) is most probably a SPI
which extracts its energy almost entirely from the strain field with the background
shear acting so as to suppress it. Confusing the two instabilities may clearly result in
misinterpretation of results of numerical simulations. This confusion can be avoided
by detailed analysis of the energetics of the structures forming on the braid or by
comparing the spanwise wavenumbers of the two instabilities (which is only relevant
in the case of a three-dimensional flow). We have further shown that discussion of
braid shear instability should not be focused solely on the stagnation point as the
SSI eigenfunction extends along the braid. The SSI eigenfunction has a larger spatial
extension at early stages of flow evolution and shrinks with time due to evolution
of the vortex cores. Therefore, the probability of occurrence of SSI on the braid is
very time dependant and greatly diminishes at later stages of flow evolution due to
emergence of other three-dimensional secondary instabilities. In MP2 we show that
as the Reynolds number increases, SSI will have a larger growth rate (compared
with other instabilities) earlier in flow evolution as its eigenfunction extends for
greater distance along the braid and, hence, has a better chance of emerging. Such
a conclusion would not be warranted based upon arguments only in terms of RiB and
γs/Ωs.

Our analyses demonstrated the possibility of emergence of three-dimensional SSI
modes with wavelengths comparable to that of the main KH wave. The pairing
instability was found to be of a three-dimensional nature in stratified layers in
agreement with similar previously reported results for homogeneous shear flows.

Perhaps one of the most important findings of this work, however, concerns the
discovery of the existence of the SPI and SVBI modes which develop in the middle
of the braid and tend to roll-up or to deform the braid at its stagnation point. These
modes exist for a wide range of spanwise wavenumbers. The fastest growing mode
of the SPI has a spanwise wavenumber close to that of the fastest growing mode of
the secondary convective instability. A observational example of the SPI mode seems
to be seen in figure 14 of Moum et al. (2003) which shows a KH billow forming on
the interface of an internal solitary wave approaching the shore. It may well be that
the onset of SPI along with SCI (and other three-dimensional short-wave modes which
exist in the high-Reynolds-number regime) is responsible for strongly inhibiting the
occurrence of pairing and, thus, the upscale cascade of energy in turbulent stratified
shear flows. The possibility of finite amplitude growth of a highly three-dimensional
instability which grows at the stagnation point of a strain field in the presence of shear
and which extracts its energy from the stain field, may have important implications
for turbulence transition in other examples of geophysical flows and calls for further
investigation.

It should be noted that even though SPI is hard to distinguish from SSI vortices on
the braid in two-dimensional simulations (such as in figure 18 and in simulations of
Staquet (1995)), the two have very different spanwise length scales (with SPI being
a short-wave mode which will contribute more effectively to transition to turbulence).
Moreover, SPI is a phase-locked instability which remains at the stagnation point for
a considerable length of time whereas SSI vortices move along the braid and towards
the cores upon formation. These two major differences provide a means of exactly
distinguishing SPI from SSI in both three-dimensional simulations and in laboratory
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FIGURE 18. Vorticity contours showing braid instabilities for: (a) Re= 2000; (b) Re= 4000;
(c) Re= 6000; and (d) Re= 8000. All four cases correspond to a Richardson number value of
0.12 and a Prandtl number of 1.

experiments (provided that flow conditions required for SPI to grow can be provided
in a laboratory setting).

Insofar as the evolution of the SSI is concerned, we have shown (using both the
heuristic model and the stability analysis) that an increase in the Reynolds number
enhances the probability of occurrence of the SSI. To illustrate this, we plot the
vorticity contours for four cases with Reynolds numbers ranging from 2000 to 8000
in figure 18 (note that these contours are obtained from two-dimensional simulations;
three-dimensional evolution of the secondary modes discussed herein will be pursued
in future work). For this case, the SSI does not grow into a train of small billows
as one would expect from the eigenfunctions shown in figure 8. The formation of the
two vortices on the braid are triggered by the braid deformation induced by the SVBI.
Vortices formed on the braid in figure 18(b) (for Re = 4000) are of shear type and
their emergence has triggered a form of braid deformation which will be discussed in
MP2. For the Re = 6000 case, the first instability to emerge is the SPI which excites
formation of numerous secondary shear vortices on the braid. Advection of these
vortices to the periphery of the cores by the braid leads to significant deformations
in the vortex cores. For figure 18(d), the Reynolds number is high enough (8000)
that the SSI begins to show characteristics more in harmony with the eigenfunction
shown in figure 8. This is because, in agreement with our theoretical predictions, as
the Reynolds number increases, the SSI will have a greater probability of emergence at
earlier stages of flow evolution and prior to the onset of other modes of instability.

According to our heuristic model, the stratification level is of first-order importance
in the competition between the SSI and SCI (and possibly other) modes. Therefore, as
the next step of this sleuthing of the inhabitants of the secondary instability zoo it will
be important to investigate the effect of variations in the Richardson number on the
time evolution of the possibility of occurrence of various modes of instability. This is
our main focus in the companion paper MP2.
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Appendix
Figure 19 gives a lexicon of various secondary instabilities discussed in this paper

and in MP2 and table 2 is a summary of acronyms used to refer to previous studies.
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FIGURE 19. Lexicon of various secondary instabilities discussed in this paper and in
MP2. Each frame contains the reference to the original study which provides details of its
corresponding instability. The first frame also shows the underlying background KH billow.

MP2 Mashayek & Peltier (2012)
CS76 Corcos & Sherman (1976)
S03 Smyth (2003)
CP00 Caulfield & Peltier (2000)
KP85 Klaassen & Peltier (1985)
KP89 Klaassen & Peltier (1989)

TABLE 2. Summary of acronyms used to refer to previous studies.
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